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We determine the topological susceptibilityχt in the topologically-trivial sector generated by

lattice simulations ofNf = 2+ 1 QCD with overlap Dirac fermion, on a 163× 48 lattice with

lattice spacing∼ 0.11 fm, for five sea quark massesmq ranging fromms/6 to ms (wherems is

the physical strange quark mass). Theχt is extracted from the plateau (at large time separation)

of the 2-point and 4-point time-correlation functions of the flavor-singlet pseudoscalar mesonη ′,

which arises from the finite size effect due to fixed topology.In the smallmq regime, our result

of χt agrees with the chiral effective theory. Using the formulaχt = Σ(m−1
u +m−1

d +m−1
s )−1 by

Leutwyler-Smilga, we obtain the chiral condensateΣMS(2 GeV) = [253(4)(6)MeV]3.
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1. Introduction

In Quantum Chromodynamics (QCD), the topological susceptibility (χt ) is the most crucial
quantity to measure the topological charge fluctuations of the QCD vacuum, which plays an im-
portant role in breaking theUA(1) symmetry. Theoretically,χt is defined as

χt =

∫

d4x〈ρ(x)ρ(0)〉 , ρ(x) =
1

32π2 εµνλσ tr[Fµν(x)Fλσ (x)] (1.1)

whereρ(x) is the topological charge density expressed in term of the matrix-valued field tensor
Fµν . With mild assumptions, Witten [1] and Veneziano [2] obtained a relationship between the
topological susceptibility in the quenched approximationand the mass ofη ′ meson (flavor singlet)
in full QCD with Nf degenerate flavors, namely,χt(quenched) = f 2

π m2
η ′/(4Nf ) where fπ = 131

MeV, the decay constant of pion. This implies that the mass ofη ′ is essentially due to the axial
anomaly relating to non-trivial topological charge fluctuations, which can turn out to be nonzero
even in the chiral limit, unlike those of the (non-singlet) approximate Goldstone bosons.

Using the Chiral Perturbation Theory (ChPT), Leutwyler andSmilga [3] obtained the follow-
ing relation in the chiral limit

χt =
Σ

(

1
mu

+ 1
md

+ 1
ms

) +O(m2
u), (Nf = 2+1), (1.2)

wheremu, md, andms are the quark masses, andΣ is the chiral condensate. This implies that in the
chiral limit (mu → 0) the topological susceptibility is suppressed due to internal quark loops. Most
importantly, (1.2) provides a viable way to extractΣ from χt in the chiral limit.

From (1.1), one obtains

χt =

〈

Q2
t

〉

Ω
, Qt ≡

∫

d4xρ(x),

whereΩ is the volume of the system, andQt is the topological charge. Thus, one can obtainχt by
counting the number of gauge configurations for each topological sector. Obviously, for a set of
gauge configurations withQt = 0, it givesχt = 0. However, even for a topologically-trivial gauge
configuration, it may possess non-trivial topological excitations in sub-volumes. Thus, one can
measureχt using the correlation of the topological charges of two sub-volumes.

In general, for any topological sector withQt , using saddle point expansion on the QCD par-
tition function in a finite volume, it can be shown that [4]

lim
|x|→∞

〈ρ(x)ρ(0)〉 =
1
Ω

(

Q2
t

Ω
− χt −

c4

2χt Ω

)

+O(Ω−3), (1.3)

wherec4 =− 1
Ω

[

〈Q4
t 〉θ=0−3〈Q2

t 〉
2
θ=0

]

. However, for lattice QCD, it is difficult to extractρ(x) and
Qt unambiguously from the gauge link variables, due to their rather strong fluctuations.

To circumvent this difficulty, one may consider the Atiyah-Singer index theorem [5]

Qt = n+ −n− = index(D), (1.4)

wheren± is the number of zero modes of the massless Dirac operatorD ≡ γµ(∂µ + igAµ) with ±

chirality. SinceD is anti-Hermitian and chirally symmetric, its nonzero eigenmodes must come
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in complex conjugate pairs (i.e.,Dφ = iλφ impliesDγ5φ = −iλγ5φ , for λ = λ ∗ 6= 0) with zero
chirality (

∫

d4xφ†γ5φ = 0). Thus one can obtain the identity

n+−n− =

∫

d4x mtr[γ5(D +m)−1(x,x)], (1.5)

by spectral decomposition, where the nonzero modes drop outdue to zero chirality. In view of (1.4)
and (1.5), one can regardm tr[γ5(D +m)−1(x,x)] as topological charge density, to replaceρ(x) in
the measurement ofχt .

For lattice QCD, it is well-known that the overlap Dirac operator [6, 7] in a topologically
non-trivial gauge background possesses exact zero modes (with definite chirality) satisfying the
Atiyah-Singer index theorem. Writing the massive overlap Dirac operator as

D(m) =
(

m0 +
m
2

)

+
(

m0−
m
2

)

γ5
Hw(−m0)

√

H2
w(−m0)

,

whereHw(−m0) is the standard Hermitian Wilson operator with negative mass−m0 (0 < m0 < 2),
then the topological charge density can be defined as

ρm(x) = m tr[γ5(Dc +m)−1
x,x ],

where(Dc + m)−1 is the valence quark propagator with quark massm, andDc is a chirally sym-
metric operator relating toD(0) by Dc = D(0)[1−D(0)/(2m0)]

−1 [8]. Hereρm(x) is justified to
be topological charge density, since it can be shown that∑x ρm(x) = n+ −n−, which is similar to
its counterpart in continuum, (1.5).

Now we can replaceρ(x) with ρ1(x), and use (1.3) to extractχt for any topological sector.
However, on a finite lattice, it is contaminated bymπ , mη ′ and any states which can couple to
〈ρ1(x)ρ1(0)〉. An alternative is to consider the correlator of the flavor-singlet pseudoscalar meson
η ′ [4]

lim
|x1−x2|�1

m2
q

〈

η ′(x1)η ′(x2)
〉

Q = −
χt

Ω

(

1−
Q2

χtΩ
+

c4

2χ2
t Ω

)

+O(e−mη′ |x1−x2|)+O(Ω−3), (1.6)

which is equal to the disconnected part〈ρ1(x1)ρ1(x2)〉Q at large separation, but it tends to the
asymptotic value faster than the later since it only couplesto the states containingη ′. Then the
time-correlation function ofη ′ is fitted to A+ B(e−Mt + e−M(T−t)) to obtain the constantA =
1

m2
q

1
T

(

Q2
t

Ω − χt −
c4

2χt Ω

)

, and from which to extractχt provided that|c4| � 2χ2
t Ω. This was how

we determined the topological susceptibility in two-flavorlattice QCD with fixed topology [9, 10].
However, it was unclear to what extent the assumption|c4| � 2χ2

t Ω was satisfied. To elim-
inate this constraint, we compute the 4-point correlator ofη ′, as well as the 2-point correlator.
Theoretically, in a fixed topology, the former behaves as [4]

lim
|xi−xj |�1

m4
q〈η ′(x1) · · ·η ′(x4)〉Q =

3χ2
t

Ω2

(

1−
Q2

χtΩ
+

c4

χ2
t Ω

)2

+O(e−mη′ |xi−xj |)+O(Ω−4), (1.7)

From (1.6) and (1.7), one can solve forχt andc4 (or equivalently, the parametery)

χt =
Q2

Ω
+ Ω

(

2k2−
√

k4/3
)

, (1.8)

y ≡
c4

2χ2
t Ω

= −

(

√

k4/3−k2

)

√

k4/3−2k2

(

1−
Q2

χtΩ

)

, (1.9)
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where−k2 andk4 are the asymptotic values of 2-point and 4-point correlators at large separation.
It is interesting to note that if one neglects they term in (1.6) and (1.7), they reduce to

χt '
Q2

Ω
+ Ωk2, (1.10)

χt '
Q2

Ω
+ Ω

√

k4/3, (1.11)

which provide two independent estimates ofχt . In other words, if|y| � 1, then (1.8), (1.10) and
(1.11) all give compatible results forχt . On the other hand, if (1.10) and (1.11) turn out to be
quite different from each other, then|y| must be substantially larger than zero, and a more reliable
estimate ofχt could be given by (1.11).

For the (2+1)-flavor QCD, theη ′ interpolating operator must take into account of the fact that
different flavors have different quark masses, namely,

mqη ′ =
mq

Nf

Nf

∑
f=1

q̄f γ5qf −→ η ′
T =

1
Nf

Nf

∑
f=1

mf q̄f γ5qf (1.12)

whereη ′
T is called the “topological"η ′ operator for computing topological charge density correla-

tors.
In this paper, we use 80 pairs of low-lying eigenmodes of the overlap operator to evaluate the

2-point and 4-point correlators ofη ′
T , and to extract their asympototic values−k2 andk4. Then we

use (1.8)-(1.9) to obtainχt andy. Note thatc4 is related to the leading anomalous contribution to
the η ′−η ′ scattering amplitude in QCD, as well as the dependence of thevacuum energy on the
vacuum angleθ .

mu = 0.015,  ms = 0.100
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Figure 1: Low-mode saturation of (a) the 2-point functionCη ′
T
(t) (b) the 4-point functionC4η ′

T
(t)

2. Lattice Setup

Our simulations are carried out in the topologically-trivial sector (withQt = 0) for (2+1)-
flavor QCD on a 163×48 lattice at a lattice spacing∼ 0.11 fm (for details, see [11] and [12]). For
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the gluon part, the Iwasaki action is used atβ = 2.30, together with unphysical Wilson fermions
and associated twisted-mass ghosts [13]. The unphysical degrees of freedom generate a factor
det[H2

w(−m0)/(H2
w(−m0) + µ2)] in the partition function (we takem0 = 1.6 and µ = 0.2) that

suppresses the near-zero eigenvalue ofHw(−m0) and thus makes the numerical operation with the
overlap operator substantially faster. Furthermore, since the exact zero eigenvalue is forbidden, the
global topological change is preserved during the molecular dynamics evolution of the gauge field.

For ms = 0.100, we take five sea quark massmu(d) values: 0.015, 0.025, 0.035, 0.050, and
0.100 that cover the mass rangems/6–ms. After discarding 500 trajectories for thermalization,
we accumulate 2500 trajectories in total for each sea quark mass. In the calculation ofχt , we
take one configuration every 5 trajectories, thus we have 500configurations for eachmq. For
each configuration, 80 pairs of lowest-lying eigenmodes of the overlap-Dirac operatorD(0) are
calculated using the implicitly restarted Lanczos algorithm and stored for the later use.

3. Results

In practice, we use 80 pairs of low-lying eigenmodes of the overlap operator to evaluate the
2-point and 4-point time-correlation functions ofη ′

T

Cη ′
T
(t) =

1
L3T

T

∑
u=1

∑
~xi

〈

η ′
T(~x2,u+ t)η ′

T(~x1,u)
〉

, lim
t�1

1
L3Cη ′

T
(t) = −k2,

C4η ′
T
(t) =

1
L3T

T

∑
u=1

∑
~xi

〈

η ′
T(~x4,u+3t)η ′

T(~x3,u+2t)η ′
T(~x2,u+ t)η ′

T(~x1,u)
〉

, lim
t�1

1
L9C4η ′

T
(t) = k4.

Thus it is crucial to check whether these 80 eigenmodes suffice to saturateCη ′
T
(t) andC4η ′

T
(t) re-

spectively. In Fig. 1, we plotCη ′
T
(t) andC4η ′

T
(t) for mu = 0.015, versus the number of eigenmodes

(nev) 20, 40, 60, and 80 respectively. Obviously,Cη ′
T
(t) is well saturated with 80 eigenmodes for

the time range 15≤ t ≤ 24 where it attains a plateau. Similarly,C4η ′
T
(t) is also well saturated for

the time range 9≤ t ≤ 14 where it attains a plateau. The low-mode saturation also holds for all five
sea quark masses.

In Fig. 2, we plot the values ofχta4 (1.8) andy (1.9) versus the sea quark massmqa, together
with the values ofχt obtained from the 2-point function (1.10) and the 4-point function (1.11)
respectively. Evidently, the values ofχt from (1.8), (1.10), and (1.11) are in good agreement with
one another. For the smallest four quark masses, 0.015, 0.025, 0.035, and 0.050, the data points of
a4χt are well fitted by the ChPT formula [3]

χt =
Σ

m−1
u +m−1

d +m−1
s

, (3.1)

with a3Σ = 0.0021(1). In order to convertΣ to that in theMS scheme, we calculate the renor-
malization factorZMS

m (2 GeV) using the non-perturbative renormalization technique through the
RI/MOM scheme. Our result isZMS

m (2 GeV) = 0.800(10)(24) [14]. With a−1 = 1833(12) MeV
determined withr0 = 0.49 fm [12], the value ofΣ is transcribed to

ΣMS(2 GeV) = [253(4)(6)MeV]3,

5
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Figure 2: Topological susceptibilityχta4 andy ≡ c4/(2χ2
t Ω) versus sea quark massmqa for (2+1)-flavor

lattice QCD with fixed topological chargeQt = 0.
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ChPT fit  (Nf = 2+1)

Nf = 2 [arXiv:0710.1130]

ChPT fit  (Nf =2) 

Figure 3: The topological susceptibilityχt versusmq for lattice QCD with fixed topologyQt = 0.

which is in good agreement that extracted fromχt = 〈Q2
t 〉/Ω with Qt determined by the spectral

flow method for the 2+1 flavors QCD configurations generated bythe RBC and UKQCD Collab-
orations with domain-wall fermions [15]. Also, it is in goodagreement with our previous results
extracted fromχt in 2-flavor QCD [9, 10], and in theε-regime from the low-lying eigenvalues
[16]. The errors represent a combined statistical error (a−1 and ZMS

m ) and the systematic error
respectively.

At this point, it is instructive to plotχt versusmq, for 2-flavor QCD (data from [9, 10]), and
(2+1)-flavor QCD (this work), as shown in Fig. 3. Now we can seeclearly how the topological
susceptibility changes with respect to the number of flavors.

4. Concluding remark

In this paper, we have obtained the topological susceptibility χt andc4 in (2+1)-flavor QCD
from a lattice calculation of 2-point and 4-point correlators at a fixed global topological charge
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Qt = 0. The expected sea quark mass dependence ofχt from ChPT is clearly observed. Our result
asserts that the topologically non-trivial excitations are in fact locally active in the QCD vacuum,
even when the global topological charge is zero. The information of these topological excitations
is carried by the low-lying eigenmodes of the overlap Dirac operator. We will use the values of
χt we have determined to remove the artifacts due to the fixed topology in a finite volume and to
obtain the physical results in theθ vacuum [17, 4].

Finally we note that our result of the ratio|c4|/χt is substantially less than one in the chiral
limit, similar to its counterpart in quenched QCD [18, 19]. This seems to suggest that the quantum
corrections would suppress the emergence of dilute instanton gas in the full QCD vacuum.

Numerical simulations are performed on Hitachi SR11000 andIBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 08-05), and also on IBM and HP clusters at NCHC and NTU-CC in Tai-
wan. This work is supported in part by the Grant-in-Aid of theJapanese Ministry of Education
(Nos. 18340075, 18740167, 19540286, 19740160, 20025010, 20039005, 20340047, 20740156),
the National Science Council of Taiwan (Nos. NSC96-2112-M-002-020-MY3, NSC96-2112-M-
001-017-MY3, NSC97-2119-M-002-001), and NTU-CQSE (Nos. 97R0066-65, 97R0066-69).
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